A class of non-symmetric Laguerre-Hahn Polynomials

Mohamed Zaatra*

Abstract

We show that if v is a regular Laguerre-Hahn form (linear functional), then the form u defined by $(x-\beta_0^2)\sigma u=-\lambda v$ and $\sigma(x-\beta_0)u=0$ where σu is the even part of u, is also regular and Laguerre-Hahn form for every complex λ except for a discrete set of numbers depending on v. We give explicitly the recurrence coefficients and the structure relation coefficients of the orthogonal polynomials sequence associated with u and the class of the form u knowing that of v. An example related to the associated form of the first of Jacobi is worked out.

Keywords: Orthogonal polynomials; Laguerre-Hahn forms; structure relation. Mathematics Subject classifications: 33C45; 42C05

1. Introduction

In many recent papers, different construction processes of Laguerre-Hahn orthogonal polynomials (O.P) grow from well known ones, particularly the associated of classical ones. For instance, we can mention the adjunction of a finite number of Dirac's masses to Laguerre-Hahn forms [1, 6, 8], the product and the division of a form by a polynomial [2, 3, 8, 10, 12].

The whole idea of the following work is to build a new construction process of a Laguerre-Hahn form, which has not yet been treated in the literature of Laguerre-Hahn polynomials. The problem we tackle is as follows:

We study the form u, fulfilling $(x - \beta_0^2)\sigma u = -\lambda v$, $\lambda \neq 0$, $(u)_{2n+1} = \beta_0(u)_{2n}$, where σu is the even part of u, $\beta_0 \in \mathbb{C}$ and v is a given Laguerre-Hahn form.

This paper is arranged in sections : The first provides a focus on the preliminary results and notations used in the sequel. We will also give the regularity condition and the coefficients of the three-term recurrence relation satisfied by the new family of O.P. In the second , we compute the exact class of the Laguerre-Hahn form obtained by the above modification and the structure relation of the O.P. sequence relatively to the form u will follow. In the final section, we apply our results to an example. The regular form found in the example is Laguerre-Hahn of class $\tilde{s} \leq 3$.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}' be its dual. We denote by $\langle v, f \rangle$ the action of $v \in \mathcal{P}'$ on $f \in \mathcal{P}$. In particular, we denote by $(v)_n := \langle v, x^n \rangle, n \geq 0$, the moments of v. For any form v and

^{*}Institut Supérieur de Gestion de Gabès Av. Habib Jilani - Gabès - 6002, Tunisia. (medzaatra@yahoo.fr)

any polynomial h let Dv = v', hv, δ_c , and $(x - c)^{-1}v$ be the forms defined by: $\langle v', f \rangle := -\langle v, f' \rangle$, $\langle hv, f \rangle := \langle v, hf \rangle$, $\langle \delta_c, f \rangle := f(c)$,

and
$$\langle (x-c)^{-1}v, f \rangle := \langle v, \theta_c f \rangle$$
 where $(\theta_c f)(x) = \frac{f(x) - f(c)}{x - c}$, $c \in \mathbb{C}$, $f \in \mathcal{P}$.

Then, it is straightforward to prove that for $f \in \mathcal{P}$ and $v \in \mathcal{P}'$, we have

$$(x-c)^{-1}((x-c)v) = v - (v)_0 \delta_c , \qquad (1)$$

$$(x-c)((x-c)^{-1}u) = u. (2)$$

Let us define the operator $\sigma: \mathcal{P} \longrightarrow \mathcal{P}$ by $(\sigma f)(x) := f(x^2)$. Then, we define the even part σv of v by $\langle \sigma v, f \rangle := \langle v, \sigma f \rangle$. Therefore, we have [7, 9]

$$f(x)(\sigma v) = \sigma(f(x^2)v) , \qquad (3)$$

$$(\sigma v)_n = (v)_{2n} , n \ge 0 , \tag{4}$$

The form v will be called regular if we can associate with it a sequence $\{S_n\}_{n\geq 0}$ $(\deg(S_n)\leq n)$ such that

$$\langle v, S_n S_m \rangle = r_n \delta_{n,m} , \quad n, m \ge 0 , \quad r_n \ne 0 , \quad n \ge 0 .$$

Then $\deg(S_n) = n$, $n \geq 0$, and we can always suppose each S_n monic (i.e. $S_n(x) = x^n + \cdots$). The sequence $\{S_n\}_{n\geq 0}$ is said to be orthogonal with respect to v. It is a very well known fact that the sequence $\{S_n\}_{n\geq 0}$ satisfies the recurrence relation (see, for instance, the monograph by Chihara [7])

$$S_{n+2}(x) = (x - \xi_{n+1})S_{n+1}(x) - \rho_{n+1}S_n(x) , \quad n \ge 0 ,$$

$$S_1(x) = x - \xi_0 , \quad S_0(x) = 1 .$$
(5)

with $(\xi_n, \rho_{n+1}) \in \mathbb{C} \times \mathbb{C} - \{0\}$, $n \ge 0$, by convention we set $\rho_0 = (v)_0 = 1$.

In this case, let $\{S_n^{(1)}\}_{n\geq 0}$ be the associated sequence of first kind for the sequence $\{S_n\}_{n\geq 0}$ satisfying the three-term recurrence relation [7]

$$S_{n+2}^{(1)}(x) = (x - \xi_{n+2})S_{n+1}^{(1)}(x) - \rho_{n+2}S_n^{(1)}(x) , \quad n \ge 0, S_1^{(1)}(x) = x - \xi_1, \quad S_0^{(1)}(x) = 1 , \quad (S_{-1}^{(1)}(x) = 0) .$$
 (6)

Another important representation of $S_n^{(1)}$ is, (see [7])

$$S_n^{(1)}(x) := \left\langle v, \frac{S_{n+1}(x) - S_{n+1}(\zeta)}{x - \zeta} \right\rangle, \ n \ge 0.$$
 (7)

Also, let $\{S_n(.,\mu)\}_{n\geq 0}$ be co-recursive polynomials for the sequence $\{S_n\}_{n\geq 0}$ satisfying [7]

$$S_n(x,\mu) = S_n(x) - \mu S_{n-1}^{(1)}, \quad n \ge 0.$$
 (8)

We recall that a form v is called symmetric if $(v)_{2n+1} = 0$, $n \geq 0$. The conditions $(v)_{2n+1} = 0$, $n \geq 0$ are equivalent to the fact the corresponding monic orthogonal polynomials sequence $\{S_n\}_{n\geq 0}$ satisfies the recurrence relation (5) with $\xi_n = 0$, $n \geq 0$ [7].

Now let v be a regular, normalized form (i.e. $(v)_0 = 1$) and $\{S_n\}_{n \geq 0}$ be its

corresponding sequence of polynomials. For a $\beta_0 \in \mathbb{C}$ and $\lambda \in \mathbb{C}^*$, we can define a new form u as following:

$$(u)_{2n+2} - \beta_0^2(u)_{2n} = -\lambda(v)_n$$
, $(u)_{2n+1} = \beta_0(u)_{2n}$, $(u)_0 = 1$, $n \ge 0$. (9)

Equivalently,

$$(x - \beta_0^2)\sigma u = -\lambda v , \qquad \sigma((x - \beta_0)u) = 0 . \tag{10}$$

From (1) and (10), we have

$$\sigma u = -\lambda (x - \beta_0^2)^{-1} v + \delta_{\beta_2^2} . \tag{11}$$

Remarks. (i) (10) is equivalent to

$$(x^2 - \beta_0^2)u = -\lambda w , \qquad (12)$$

where the form w defined by

$$\sigma w = v$$
, $\sigma(x - \beta_0)w = 0$.

Notice that w is not necessarily a regular form in the problem understudy. In [2], the authors have solved where w is regular and $\beta_0 = 0$ and in [4], the problem (12) is solved when $\beta_0 \neq 0$ and w is regular.

(ii) The case $\beta_0 = 0$ is treated in [11], so henceforth we assume $\beta_0 \neq 0$.

PROPOSITION 1. [9] The form u defined by (10) is regular if and only if σu and $(x - \beta_0^2)\sigma u$ are regular.

PROPOSITION 2. The form u is regular if and only if $\lambda \neq \lambda_n$, $n \geq 0$ where

$$\lambda_0 = 0 , \quad \lambda_{n+1} = \frac{S_{n+1}(\beta_0^2)}{S_n^{(1)}(\beta_0^2)} , \ n \ge 0.$$
 (13)

Proof. We have u is defined by (10). Then, according to Proposition 1. u is regular if and only if $(x - \beta_0^2)\sigma u$ and σu are regular. But $(x - \beta_0^2)\sigma u = -\lambda v$ is regular because $\lambda \neq 0$ and v is regular. So u is regular if and only if $\sigma u = -\lambda (x - \beta_0^2)^{-1} \sigma v + \delta_{\beta_0^2}$ is regular. Or, $\{S_n\}_{n\geq 0}$ is the corresponding orthogonal sequence to v, and it was shown in [10] that $\sigma u = -\lambda (x - \beta_0^2)^{-1} v + \delta_{\beta_0^2}$ is regular if and only if $\lambda \neq 0$, and $S_n(\beta_0^2, \lambda) \neq 0$, $n \geq 0$. Then we deduce the desired result

When u is regular let $\{Z_n\}_{n\geq 0}$ be its corresponding sequence of polynomials satisfying the recurrence relation

$$Z_{n+2}(x) = (x - (-1)^{n+1}\beta_0)Z_{n+1}(x) - \gamma_{n+1}Z_n(x) , \quad n \ge 0 ,$$

$$Z_1(x) = x - \beta_0 , \quad Z_0(x) = 1 .$$
(14)

Let us consider its quadratic decomposition [7, 9]:

$$Z_{2n}(x) = P_n(x^2) , \quad Z_{2n+1}(x) = (x - \beta_0) R_n(x^2) ,$$
 (15)

The sequences $\{P_n\}_{n\geq 0}$ and $\{R_n\}_{n\geq 0}$ are respectively orthogonal with respect to σu and $(x-\beta_0^2)\sigma u$.

From (13), we have

$$R_n(x) = S_n(x) , \quad n > 0 .$$
 (16)

 ${f P}$ ROPOSITION 3. We may write

$$\gamma_1 = -\lambda, \quad \gamma_{2n+2} = a_n, \quad \gamma_{2n+3} = \frac{\rho_{n+1}}{a_n}, \quad n \ge 0,$$
(17)

where

$$a_n = -\frac{S_{n+1}(\beta_0^2, \lambda)}{S_n(\beta_0^2, \lambda)} , \quad n \ge 0 .$$
 (18)

For the proof, we need the following lemma:

Lemma 4. We have

$$Z_{2n}^{(1)}(x) = R_n(x^2, \lambda) , \quad Z_{2n+1}^{(1)}(x) = (x + \beta_0) P_n^{(1)}(x^2) , \quad n \ge 0 .$$
 (19)

Proof. Using (7) and (15), one has

$$Z_{2n}(\zeta) = \langle u, \frac{Z_{2n+1}(x) - Z_{2n+1}(\zeta)}{x - \zeta} \rangle \quad (u \ acts \ on \ the \ variable \ x)$$

$$= \langle u, \frac{(x - \beta_0)R_n(x^2) - (\zeta - \beta_0)R_n(\zeta^2)}{x - \zeta} \rangle$$

$$= \langle u, R_n(\zeta^2) \rangle + \langle u, (x - \beta_0) \frac{R_n(x^2) - R_n(\zeta^2)}{x - \zeta} \rangle$$

$$= R_n(\zeta^2) + \langle u, (x + \zeta)(x - \beta_0) \frac{R_n(x^2) - R_n(\zeta^2)}{x^2 - \zeta^2} \rangle$$

$$= R_n(\zeta^2) + \langle u, ((x^2 - \beta_0^2) - (\beta_0 - \zeta)(x - \beta_0)) \frac{R_n(x^2) - R_n(\zeta^2)}{x^2 - \zeta^2} \rangle \cdot$$

$$= R_n(\zeta^2) + \langle (x - \beta_0^2) \sigma u, \frac{R_n(x) - R_n(\zeta^2)}{x - \zeta^2} \rangle \quad (from (10))$$

$$= R_n(\zeta^2) - \lambda \langle v, \frac{R_n(x) - R_n(\zeta^2)}{x - \zeta^2} \rangle \quad (from (10))$$

$$= R_n(\zeta^2) - \lambda R_{n-1}^{(1)}(\zeta^2) \quad (from (7))$$

$$= R_n(\zeta^2, \lambda)$$
For the proof of the ground relation see the proof of the Lemma 4.2 in [5]

For the proof of the second relation see the proof of the Lemma 4.2 in [5]. Hence, we get (19).

Proof of Proposition 3. Using (10) and the condition $\langle u, Z_2 \rangle = 0$, we obtain $\gamma_1 = -\lambda$.

From (6) and (14) where $n \longrightarrow 2n$ and taking (16) and (19) into account, we get

$$S_{n+1}(x^2, -\gamma_1) = (x - \beta_0) Z_{2n+1}^{(1)}(x) - \gamma_{2n+2} S_n(x^2, -\gamma_1)$$
.

Substituting x by β_0 in the above equation, we obtain $\gamma_{2n+2} = a_n$. From (14), we have

$$\gamma_{2n+2}\gamma_{2n+3} = \frac{\langle u, Z_{2n+2}^2 \rangle \langle u, Z_{2n+3}^2 \rangle}{\langle u, Z_{2n+1}^2 \rangle \langle u, Z_{2n+2}^2 \rangle} = \frac{\langle u, Z_{2n+3}^2 \rangle}{\langle u, Z_{2n+1}^2 \rangle}.$$
 (20)

Using (5), (10) and (15) - (16), equation (20) becomes

$$\gamma_{2n+2}\gamma_{2n+3} = \rho_{n+1},\tag{21}$$

then we deduce $\gamma_{2n+3} = \frac{\rho_{n+1}}{a_n}$.

2. The Laguerre-Hahn case

Let us recall that a form v is called Laguerre-Hahn when it is regular and satisfies a linear non-homogeneous differential equation [2]

$$\Phi(z)S'(v)(z) = B(z)S^{2}(v)(z) + C_{0}(z)S(v)(z) + D_{0}(z), \qquad (22)$$

where Φ monic, B, C_0 and D_0 are polynomials and S(v)(z) is the formal Stieltjes function of the form v, namely

$$S(v)(z) = -\sum_{n\geq 0} \frac{(v)_n}{z^{n+1}} \ . \tag{23}$$

The class of the Laguerre-Hahn form v is $s = \max (\deg(\Phi) - 2, \deg(B) - 2, \deg(C_0) - 1)$ if and only if the following condition is satisfied [2]

$$\prod_{c \in \mathcal{Z}} (|B(c)| + |C_0(c)| + |D_0(c)|) \neq 0, \tag{24}$$

where \mathcal{Z} denotes the set of zeros of Φ .

The corresponding orthogonal sequence $\{S_n\}_{n\geq 0}$ is also called Laguerre-Hahn of class s.

The Laguerre-Hahn character is invariant by shifting. Indeed, the shifted form $\hat{v} = (h_{a^{-1}}ot_{-b})v, \ a \in \mathbb{C} - \{0\}, \ b \in \mathbb{C}$ satisfies

$$\hat{\Phi}(z)S'(\hat{v})(z) = \hat{B}(z)S^2(\hat{v})(z) + \hat{C}_0(z)S(\hat{v})(z) + \hat{D}_0(z) , \qquad (25)$$

with

$$\begin{cases} \hat{\Phi}(z) = a^{-k}\Phi(az+b) , \ \hat{B}(z) = a^{-k}B(az+b) , \\ \hat{C}_0(z) = a^{1-k}C_0(az+b) , \ \hat{D}_0(z) = a^{2-k}D_0(az+b) , \ k = \deg(\Phi) . \end{cases}$$

The forms $t_b v$ (translation of v) and $h_a v$ (dilation of v) are defined by

$$\langle t_h v, f \rangle := \langle v, f(x+b) \rangle, \quad \langle h_a v, f \rangle := \langle v, f(ax) \rangle, \quad f \in \mathcal{P}.$$

The sequence $\{\hat{S}_n(x) = a^{-n}S_n(ax+b)\}_{n\geq 0}$ is orthogonal with respect to \hat{v} and fulfils (5) with

$$\hat{\xi}_n = \frac{\xi_n - b}{a}, \quad \hat{\rho}_{n+1} = \frac{\rho_{n+1}}{a^2}, \quad n \ge 0.$$
 (26)

We can state characterizations of Laguerre-Hahn orthogonal sequences. $\{S_n\}_{n\geq 0}$ is Laguerre-Hahn of class s if and only if one of the following statements holds: (a) The form v satisfied the functional equation [2]

$$(\Phi(x)v)' + \Psi(x)v + B(x^{-1}v^2) = 0$$
(27)

with

$$\Psi(x) = -\Phi'(x) - C_0(x). \tag{28}$$

We also have the following relation:

$$D_0(x) = -\left(v\theta_0\Phi\right)'(x) - \left(v\theta_0\Psi\right)(x) - \left(v^2\theta_0^2B\right)(x). \tag{29}$$

(b) $\{S_n\}_{n\geq 0}$ fulfills the following structure relation (written in a compact form):

$$\Phi(x)S'_{n+1}(x) - B(x)S_n^{(1)}(x) =
\frac{1}{2} (C_{n+1}(x) - C_0(x))S_{n+1}(x) - \rho_{n+1}D_{n+1}(x)S_n(x) , n \ge 0,$$
(30)

where

$$\begin{cases}
C_{n+1}(x) = -C_n(x) + 2(x - \xi_n)D_n(x), & n \ge 0, \\
\rho_{n+1}D_{n+1}(x) = -\Phi(x) + \rho_nD_{n-1}(x) - (x - \xi_n)C_n(x) + \\
+ (x - \xi_n)^2D_n(x), & n \ge 0,
\end{cases}$$
(31)

 Φ , $C_0(x)$ and $D_0(x)$ are the same polynomials introduced in (a); ξ_n , ρ_n are the coefficients of the three term recurrence relation (5). Notice that $D_{-1}(x) = B(x)$, $\deg C_n \leq s+1$ and $\deg D_n \leq s, n \geq 0$ [2].

In the sequel the form v will be supposed Laguerre-Hahn form of class s satisfying (22) and (27) and using a dilation in the variable β_0 , we can take him equal to one.

PROPOSITION 5. For every $\lambda \in \mathbb{C} - \{0\}$ such that $S_n(1,\lambda) \neq 0, n \geq 0$, the form u defined by (10) is regular and Laguerre-Hahn. It satisfies

$$\tilde{\Phi}(z)S'(u)(z) = \tilde{B}(z)S^{2}(u)(z) + \tilde{C}_{0}(z)S(u)(z) + \tilde{D}_{0}(z), \tag{32}$$

where

$$\begin{cases}
\tilde{\Phi}(z) = (z-1)\Phi(z^{2}), \\
\tilde{B}(z) = -2\lambda^{-1}z(z-1)^{2}B(z^{2}), \\
\tilde{C}_{0}(z) = 2z(z-1)C_{0}(z^{2}) - \Phi(z^{2}) - 4\lambda^{-1}z(z-1)B(z^{2}), \\
\tilde{D}_{0}(z) = -2z(\lambda^{-1}B(z^{2}) + \lambda D_{0}(z^{2}) - C_{0}(z^{2})),
\end{cases} (33)$$

and u is of class \tilde{s} such that $\tilde{s} \leq 2s + 3$.

Proof. From (10) and (23), we have

$$S(v)(z^{2}) = -\lambda^{-1}(z-1)S(u)(z) - \lambda^{-1}.$$
 (34)

Make a change of variable $z \longrightarrow z^2$ in (22), multiply by $-2\lambda z$ and substitute (34) in the obtained equation, we get (32) – (33).

Then, $\deg(\tilde{\Phi}) \leq 2s + 5$, $\deg(\tilde{B}) \leq 2s + 7$ and $\deg(\tilde{C}_0) \leq 2s + 4$.

Thus, $\tilde{s} = \max(\deg(\tilde{\Phi}) - 2, \deg(\tilde{B}) - 2, \deg(\tilde{C}_0) - 1) \le 2s + 5$.

As an immediate consequence of (32) - (33), the form u satisfies the functional equation

$$(\tilde{\Phi}u)' + \tilde{\Psi}u + \tilde{B}(x^{-1}u^2) = 0$$
, (35)

where $\tilde{\Phi}$ is the polynomial defined by (33) and

$$\tilde{\Psi}(x) = -\tilde{\Phi}'(x) - \tilde{C}_0(x) = 2x(x-1)\Psi(x^2) + 4\lambda^{-1}x(x-1)B(x^2) . \tag{36}$$

PROPOSITION 6. The class of u depends only on the zeros x=0 and x=1 of $\tilde{\Phi}$.

Proof. Since v is a Laguerre-Hahn form of class s, S(v)(z) satisfies (22), where the polynomials Φ , B, C_0 and D_0 are coprime. Let $\tilde{\Phi}$, \tilde{B} , \tilde{C}_0 and \tilde{D}_0 be as in Proposition 5. Let d be a zero of $\tilde{\Phi}$ different from 0 and 1, this implies that $\Phi(d^2) = 0$. We know that $|B(d^2)| + |C_0(d^2)| + |D_0(d^2)| \neq 0$

- (i) If $B(d^2) \neq 0$, then $\tilde{B}(d) \neq 0$,
- (ii) if $B(d^2) = 0$ and $C_0(d^2) \neq 0$, then $\tilde{C}_0(d) \neq 0$,
- (iii) if $B(d^2) = C_0(d^2) = 0$, then $\tilde{D}_0(d) \neq 0$, whence $|\tilde{B}(d)| + |\tilde{C}_0(d)| + |\tilde{D}_0(d)| \neq 0$.

Concerning the class of u, we have the following result.

PROPOSITION 7. Let $t = \deg(\Phi)$, $r = \deg(B)$, $p = \deg(C_0)$, $X(z) = C_0(z) - \lambda D_0(z) - \lambda^{-1}B(z)$ and $Y(z) = C_0(z) - \Phi(z) - 2\lambda^{-1}B(z)$, where the polynomials Φ , B, C_0 and D_0 are defined in (22).

For every $\lambda \neq \lambda_n$, $n \geq 0$, the linear functional u defined by (10) is regular and Laguerre-Hahn form of class \tilde{s} satisfying (32). Moreover:

1) If $\Phi(0)(|\Phi(1)| + |X(1)|) \neq 0$, then

$$\tilde{s} = \begin{cases} 2s + 5 & if \ r > p, \ t < r + 1, \\ 2s + 3 & otherwise. \end{cases}$$
(37)

2) If either

$$\Phi(0) = 0$$
 and $|\Phi(1)| + |X(1)| \neq 0$

or

$$\Phi(1) = X(1) = 0$$
 and $\Phi(0)(|Y(1)| + |X'(1)|) \neq 0$,

then

$$\tilde{s} = \begin{cases} 2s + 4 & if \ r > p, \ t < r + 1, \\ 2s + 2 & otherwise. \end{cases}$$
(38)

3) If either

$$\Phi(1) = X(1) = \Phi(0) = 0$$
 and $|Y(1)| + |X'(1)| \neq 0$

or

$$\Phi(1) = X(1) = X'(1) = Y(1) = 0$$
 and $\Phi(0) \neq 0$,

then

$$\tilde{s} = \begin{cases} 2s+3 & if \ r > p, \ t < r+1 \ . \\ 2s+1 & otherwise \ . \end{cases}$$
(39)

4) If $\Phi(1) = X(1) = X'(1) = Y(1) = \Phi(0) = 0$, then

$$\tilde{s} = \begin{cases} 2s + 2 & if \ r > p, \ t < r + 1, \\ 2s & otherwise. \end{cases}$$

$$(40)$$

Proof. 1) If $\Phi(0)(|\Phi(1)|+|X(1)|)\neq 0$, then it is not possible to simplify (32) according to Proposition 6. and the standard criterion (24). From (32), we have $\deg(\tilde{\Phi})=2t+1$, $\deg(\tilde{B})=2r+3$ and $\tilde{p}:=\deg(\tilde{C}_0)\leq \max(2p+2,2t,2r+2)$. We will distinguish two cases:

- (a) $p < \max(r, t 1)$, then $\tilde{p} \le \max(2r + 2, 2t)$ and $\tilde{s} = \max(2r + 1, 2t 1)$. If t < r + 1, then $\tilde{s} = 2r + 1 = 2s + 5$. If $t \ge r + 1$, then $\tilde{s} = 2t 1 = 2s + 3$.
- (b) $p \ge \max(r, t 1)$, then $\tilde{p} = 2p + 2$ and $\tilde{s} = 2p + 1 = 2s + 3$.

Thus, from the above situation, we deduce (37).

2) Using (24), we obtain the following cases:

(i) If $\Phi(0) = 0$ and $|\Phi(1)| + |X(1)| \neq 0$, then it is possible to simplify (32) – (33) by z. Thus, u fulfills (32) with

$$\begin{cases} \tilde{\Phi}(z) = z(z-1)(\theta_0\Phi)(z^2) ,\\ \tilde{B}(z) = -2\lambda^{-1}(z-1)^2B(z^2) ,\\ \tilde{C}_0(z) = 2(z-1)C_0(z^2) - z(\theta_0\Phi)(z^2) - 4\lambda^{-1}(z-1)B(z^2) ,\\ \tilde{D}_0(z) = 2C_0(z^2) - 2\lambda D_0(z^2) - 2\lambda^{-1}B(z^2) . \end{cases}$$

$$(41)$$

Hence, we get $\tilde{B}(0)=-2\lambda^{-1}B(0)$, $\tilde{C}_0(0)=-2C_0(0)+4\lambda^{-1}B(0)$ and $\tilde{D}_0(0)=2C_0(0)-2\lambda D_0(0)-2\lambda^{-1}B(0)$.

Or $|B(0)| + |C_0(0)| + |D_0(0)| \neq 0$, then it is not possible to simplify (32) - (41), which means that the class of u verifies (38).

(ii) If $\Phi(1) = X(1) = 0$ and $\Phi(0)(|Y(1)| + |X'(1)|) \neq 0$, then *u* fulfills (32) with

$$\begin{cases}
\tilde{\Phi}(z) = \Phi(z^{2}), \\
\tilde{B}(z) = -2\lambda^{-1}z(z-1)B(z^{2}), \\
\tilde{C}_{0}(z) = 2zC_{0}(z^{2}) - (z+1)(\theta_{1}\Phi)(z^{2}) - 4\lambda^{-1}zB(z^{2}), \\
\tilde{D}_{0}(z) = 2C_{0}(z^{2}) - 2\lambda D_{0}(z^{2}) - 2\lambda^{-1}B(z^{2}) + \\
+2(z+1)(\theta_{1}(C_{0} - \lambda D_{0} - \lambda^{-1}B))(z^{2}),
\end{cases} (42)$$

and the class of u verifies (38).

- 3) Using the standard criterion (24), we obtain the following cases:
- (i) If $\Phi(1) = X(1) = \Phi(0) = 0$, then we can simplify (32) (41) by z 1. We obtain

$$\begin{cases}
\tilde{\Phi}(z) = z(\theta_0 \Phi)(z^2), \\
\tilde{B}(z) = -2\lambda^{-1}(z-1)B(z^2), \\
\tilde{C}_0(z) = 2C_0(z^2) - (\theta_0 \Phi)(z^2) - (z+1)(\theta_0 \theta_1 \Phi)(z^2) - 4\lambda^{-1}B(z^2), \\
\tilde{D}_0(z) = -2(z+1)(\theta_1(\lambda^{-1}B + \lambda D_0 - C_0))(z^2).
\end{cases} (43)$$

Therefore the class of u verifies (39) if $|Y(1)| + |X'(1)| \neq 0$.

(ii) If $\Phi(1) = X(1) = X'(1) = Y(1) = 0$, then we can simplify (32) – (42) by (z-1).

We get

$$\begin{cases}
\tilde{\Phi}(z) = (z+1)(\theta_1\Phi)(z^2), \\
\tilde{B}(z) = -2\lambda^{-1}zB(z^2), \\
\tilde{C}_0(z) = 2C_0(z^2) - (\theta_1\Phi)(z^2) - 4\lambda^{-1}B(z^2) + \\
+2(z+1)(\theta_1(C_0 - \theta_1\Phi - 2\lambda^{-1}B))(z^2), \\
\tilde{D}_0(z) = -2(z+2)(\theta_1(\lambda^{-1}B + \lambda D_0 - C_0))(z^2) - \\
-4(z+1)(\theta_1^2(\lambda^{-1}B + \lambda D_0 - C_0))(z^2).
\end{cases}$$
(44)

Thus the class of u verifies (39) if $\Phi(0) \neq 0$.

Assuming that $\tilde{\Phi}(1) = 2\Phi'(1) = 0$, then from the condition Y(1) = 0 we obtain

 $C_0(1) = 2\lambda^{-1}B(1)$. Thus from the last result and the condition X(1) = 0, we get $D_0(1) = \lambda^{-2}B(1)$. So that, in this case we have $B(1) \neq 0$, since v is Laguerre-Hahn form of class s and so satisfies (24).

4) If $\Phi(1) = X(1) = X'(1) = Y(1) = \Phi(0) = 0$, then it is possible to simplify (32) - (43) by z - 1. Thus u fulfills (32) with

$$\begin{cases}
\tilde{\Phi}(z) = (z+1)(\theta_0\theta_1\Phi)(z^2) + (\theta_0\Phi)(z^2) , \\
\tilde{B}(z) = -2\lambda^{-1}B(z^2) , \\
\tilde{C}_0(z) = 2(z+1)(\theta_1(C_0 - \theta_0\theta_1\Phi - 2\lambda^{-1}B))(z^2) - \\
-(z+2)(\theta_0\theta_1\Phi)(z^2) , \\
\tilde{D}_0(z) = -2(\theta_1(\lambda^{-1}B + \lambda D_0 - C_0))(z^2) - \\
-4(z+1)(\theta_1^2(\lambda^{-1}B + \lambda D_0 - C_0))(z^2) .
\end{cases} (45)$$

Then, the class of u verifies (40).

According to Proposition 5, the form u is also Laguerre-Hahn and its O.P sequence $\{Z_n\}_{n>0}$ satisfies a structure relation. In general, $\{Z_n\}_{n>0}$ fulfils

$$\tilde{\Phi}(x)Z'_{n+1}(x) - \tilde{B}(x)Z_n^{(1)}(x) =
\frac{1}{2} (\tilde{C}_{n+1}(x) - \tilde{C}_0(x))Z_{n+1}(x) - \gamma_{n+1}\tilde{D}_{n+1}(x)Z_n(x) , n \ge 0,$$
(46)

with

$$\begin{cases}
\gamma_{n+1}\tilde{D}_{n+1}(x) = -\tilde{\Phi}(x) + \gamma_n\tilde{D}_{n-1}(x) - (x - (-1)^n)\tilde{C}_n(x) + (x - (-1)^n)^2\tilde{D}_n(x), \\
\tilde{C}_{n+1}(x) = -\tilde{C}_n(x) + 2(x - (-1)^n)\tilde{D}_n(x), \quad , n \ge 0,
\end{cases}$$
(47)

where $\tilde{C}_0(x)$, $\tilde{D}_0(x)$ are given by (31) and $\gamma_0 \tilde{D}_{-1}(x) = \tilde{B}(x)$.

We are going to establish the expression of \tilde{C}_n and \tilde{D}_n , $n \geq 0$ in terms of those of the sequence $\{S_n\}_{n\geq 0}$.

PROPOSITION 8. The sequence $\{Z_n\}_{n\geq 0}$ fulfils (46) with (for $n\geq 0$)

$$\begin{cases}
\tilde{C}_{2n+1}(x) = \Phi(x^2) + 2x(x-1)\left(C_n(x^2) + 2\gamma_{2n+1}D_n(x^2)\right), \\
\tilde{D}_{2n+1}(x) = 2x(x-1)^2D_n(x^2).
\end{cases} (48)$$

$$\begin{cases}
\tilde{C}_{2n+2}(x) = -\Phi(x^2) + 2x(x-1)\left(C_{n+1}(x^2) + 2\gamma_{2n+2}D_n(x^2)\right), \\
\tilde{D}_{2n+2}(x) = 2x\left(\gamma_{2n+2}D_n(x^2) + \gamma_{2n+3}D_{n+1}(x^2) + C_{n+1}(x^2)\right).
\end{cases} (49)$$

 $\tilde{C}_0(x)$ and $\tilde{D}_0(x)$ are given by (31) and γ_{n+1} by (17).

Proof. Change $x \longrightarrow x^2$, $n \longrightarrow n-1$ in (30) and multiply by $2x(x-1)^2$, we obtain by taking (15) - (16), (19) and (33) into account,

$$\tilde{\Phi}(x)Z_{2n+1}'(x) - \tilde{B}(x)Z_{2n}^{(1)}(x) = \left\{x(x-1)\left(C_n(x^2) - C_0(x^2) + 2\lambda^{-1}B(x^2)\right) + \Phi(x^2)\right\}Z_{2n+1}(x) - 2\rho_n x(x-1)D_n(x^2)Z_{2n-1}(x), \quad n \ge 1.$$

Using (14) and (21) where $n \longrightarrow 2n-1$, the last equation becomes

$$\tilde{\Phi}(x)Z_{2n+1}'(x) - \tilde{B}(x)Z_{2n}^{(1)}(x) = \left\{x(x-1)\left(C_n(x^2) - C_0(x^2) + 2\lambda^{-1}B(x^2) + 2\gamma_{2n+1}D_n(x^2)\right) + \Phi(x^2)\right\}Z_{2n+1}(x) - C_0(x^2) + 2\lambda^{-1}B(x^2) + 2\lambda^{-1}B(x^2)$$

$$-2\gamma_{2n+1}x(x-1)^2D_n(x^2)Z_{2n}(x), n \ge 0.$$

From (46) and the above equation, we have for $n \geq 0$

$$\left\{ \frac{\tilde{C}_{2n+1}(x) - \tilde{C}_0(x)}{2} - X_n(x) \right\} Z_{2n+1}(x) = \gamma_{2n+1} \left\{ \tilde{D}_{2n+1} - Y_n(x) \right\} Z_{2n}(x)$$

with

$$X_n(x) = \left(C_n(x^2) - C_0(x^2) + 2\gamma_{2n+1}D_n(x^2) - 2\lambda^{-1}B(x^2)\right)x(x-1) + \Phi(x^2)$$

and $Y_n(x) = 2x(x-1)^2D_n(x^2)$.

 Z_{2n+1} and Z_{2n} have no common zeros, then Z_{2n+1} divides $Y_n(x) - \tilde{D}_{2n+1}(x)$, which is a polynomial of degree at most equal to 2s + 5.

Then, we have necessarily $Y_n(x) - \tilde{D}_{2n+1}(x) = 0$ for n > s+2, and also $X_n(x) = \frac{\tilde{C}_{2n+1}(x) - \tilde{C}_0(x)}{2}$, n > s+2. Therefore, $\tilde{C}_{2n+1}(x) = 2X_n(x) + \tilde{C}_0(x)$ and $\tilde{D}_{2n+1} = Y_n(x)$, n > s+2. Then, by (31), we get (48) for n > s+2. By virtue of the recurrence relation (47) and (31), we can easily prove by induction that the system (48) is valid for $0 \le n \le s+2$. Hence (48) is valid for $n \ge 0$. Finally, from (47) and (48), we give (49).

3. Illustrative example

We study the problem (10), with $v := \mathcal{J}^{(1)}(\alpha, \beta)$ where $\mathcal{J}^{(1)}(\alpha, \beta)$ is the associated form of the first order of Jacobi form. Here [6, 9]

$$\begin{cases} \xi_n = \frac{\beta^2 - \alpha^2}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 4)}, & n \ge 0, \\ \rho_{n+1} = 4 \frac{(n+2)(n + \alpha + 2)(n + \beta + 2)(n + \alpha + \beta + 2)}{(2n + \alpha + \beta + 3)(2n + \alpha + \beta + 4)^2(2n + \alpha + \beta + 5)}, & n \ge 0. \end{cases}$$
(50)

The regularity condition is α , $\beta \neq -n$, $\alpha + \beta \neq -n$, $n \geq 2$.

$$\begin{cases}
\Phi(x) = x^2 - 1, \quad B(x) = 4 \frac{(\alpha + \beta + 1)(\alpha + 1)(\beta + 1)}{(\alpha + \beta + 3)(\alpha + \beta + 2)^2}, \\
\Psi(x) = -(\alpha + \beta + 4)x - \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2},
\end{cases} (51)$$

$$\begin{cases}
D_n(x) = 2n + \alpha + \beta + 3, \\
C_n(x) = (2n + \alpha + \beta + 2)x + \frac{\alpha^2 - \beta^2}{2n + \alpha + \beta + 2}, & n \ge 0.
\end{cases}$$
(52)

We assume $(\alpha + \beta + 1)(\alpha + 1)(\beta + 1) \neq 0$, then v is Laguerre-Hahn form of class s = 0.

Using (5) and (50), we get

$$S_n(1) = 2^n \frac{2^n}{\Gamma(\alpha + \beta + 2n + 3)} b_n(\alpha, \beta), \quad n \ge 0,$$

$$(53)$$

where for $n \geq 0$

$$b_n(\alpha,\beta) = \begin{cases} \frac{1}{\alpha} \left(\frac{\Gamma(\alpha+n+2)\Gamma(\alpha+\beta+n+2)}{\Gamma(\alpha+1)} - \frac{\Gamma(\alpha+\beta+1)\Gamma(n+2)\Gamma(\beta+n+2)}{\Gamma(\beta+1)} \right), & \alpha \neq 0, \\ \Gamma(n+2)\Gamma(n+\beta+2) \sum_{k=0}^{n} \left(\frac{1}{k+1} + \frac{1}{\beta+k+1} \right), & \alpha = 0. \end{cases}$$
(54)

From (6) and (50), we obtain by induction

$$S_n^{(1)}(1) = 2^n \frac{(\alpha + \beta + 2)^2 (\alpha + \beta + 3)}{(\alpha + 1)(\beta + 1)\Gamma(\alpha + \beta + 2n + 5)} c_n(\alpha, \beta) , \quad n \ge 0 ,$$
 (55)

where for n > 0

$$c_n(\alpha,\beta) = \frac{(\alpha+\beta+1)(\beta+1)}{(\alpha+\beta+2)} b_{n+1}(\alpha,\beta) - \frac{\Gamma(\beta+n+3)\Gamma(\alpha+\beta+n+3)}{\Gamma(\beta+1)}.$$
(56)

By virtue of (8), (53) and (55), we deduce

$$S_n(1,\lambda) = \frac{2^n}{\Gamma(\alpha+\beta+2n+3)} d_n(\lambda,\alpha,\beta), \quad n \ge 0$$
 (57)

where for $n \geq 0$

$$d_n(\lambda, \alpha, \beta) = (\alpha + \beta + 1)b_n(\alpha, \beta) - \lambda \frac{(\alpha + \beta + 2)^2(\alpha + \beta + 3)}{2(\alpha + 1)(\beta + 1)}c_{n-1}(\alpha, \beta), \ c_{-1}(\alpha, \beta) = 0.$$
(58)

Then, u is regular for every $\lambda \neq 0$ such that

$$\lambda \neq 2 \frac{(\alpha+1)(\beta+1)(\alpha+\beta+1)b_n(\alpha,\beta)}{(\alpha+\beta+3)(\alpha+\beta+2)^2 c_{n-1}(\alpha,\beta)}, \quad n \ge 1.$$
 (59)

(18) and (57) give

$$a_n = -\frac{2}{(\alpha + \beta + 2n + 3)(\alpha + \beta + 2n + 4)} \frac{d_{n+1}(\lambda, \alpha, \beta)}{d_n(\lambda, \alpha, \beta)}, \quad n \ge 0.$$
 (60)

Then, with (17), we obtain for $n \geq 0$

$$\begin{cases}
\gamma_{1} = -\lambda, \\
\gamma_{2n+2} = -\frac{2}{(\alpha+\beta+2n+3)(\alpha+\beta+2n+4)} \frac{d_{n+1}(\lambda,\alpha,\beta)}{d_{n}(\lambda,\alpha,\beta)}, \\
\gamma_{2n+3} = -2 \frac{(n+2)(\alpha+n+2)(\beta+n+2)(\alpha+\beta+n+2)}{(\alpha+\beta+2n+4)(\alpha+\beta+2n+5)} \frac{d_{n}(\lambda,\alpha,\beta)}{d_{n+1}(\lambda,\alpha,\beta)}.
\end{cases}$$
(61)

Taking into account that the form v is Laguerre-Hahn and by virtue of Proposition 5, the form u is also Laguerre-Hahn. It satisfies (32) and (35) with

$$\begin{cases}
\tilde{\Phi}(x) = (x-1)(x^4-1), \ \tilde{B}(x) = -8\lambda^{-1} \frac{(\alpha+\beta+1)(\alpha+1)(\beta+1)}{(\alpha+\beta+3)(\alpha+\beta+2)^2} x(x-1)^2, \\
\tilde{\Psi}(x) = -2x(x-1) \left((\alpha+\beta+4)x^2 + \frac{\alpha^2-\beta^2}{\alpha+\beta+2} - 16\lambda^{-1} \frac{(\alpha+\beta+1)(\alpha+1)(\beta+1)}{(\alpha+\beta+3)(\alpha+\beta+2)^2} \right), \\
\tilde{C}_0(x) = -x^4 + 2x(x-1) \left((\alpha+\beta+2)x^2 + \frac{\alpha^2-\beta^2}{\alpha+\beta+2} - 16\lambda^{-1} \frac{(\alpha+\beta+1)(\alpha+1)(\beta+1)}{(\alpha+\beta+3)(\alpha+\beta+2)^2} \right) + 1, \\
\tilde{D}_0(x) = -2x \left(-(\alpha+\beta)x^2 - \frac{\alpha^2-\beta^2}{\alpha+\beta+2} + 4\lambda^{-1} \frac{(\alpha+\beta+1)(\alpha+1)(\beta+1)}{(\alpha+\beta+3)(\alpha+\beta+2)^2} + \lambda(\alpha+\beta+3) \right).
\end{cases}$$
(63)

From (62) - (63), we have

$$\begin{cases} \Phi(0) = -1 \ , \quad \Phi(1) = 0 \ , \\ X(1) = -(\alpha + \beta + 3)\lambda^{-1} \left(\lambda + \frac{2\beta + 2}{(\alpha + \beta + 2)(\alpha + \beta + 3)}\right) \left(\lambda + \frac{2(\alpha + 1)(\beta + 1)}{(\alpha + \beta + 2)(\alpha + \beta + 3)}\right) \\ X'(1) = \alpha + \beta + 2 \ , \quad Y(1) = 2\frac{(\alpha + 1)(\alpha + \beta)}{\alpha + \beta + 2} - 8\lambda^{-1} \frac{(\alpha + \beta + 1)(\alpha + 1)(\beta + 1)}{(\alpha + \beta + 3)(\alpha + \beta + 2)^2} \ . \end{cases}$$

Now it is enough to use Proposition 7 in order to obtain the following results:

- (i) If λ satisfies (13) and $\lambda \notin E = \{-\frac{2\beta+2}{(\alpha+\beta+2)(\alpha+\beta+3)}, -\frac{2(\alpha+1)(\beta+1)}{(\alpha+\beta+2)(\alpha+\beta+3)}\}$, then the class of u is $\tilde{s} = 3$.
- (ii) If $\lambda \in E$, then the class of u is $\tilde{s} = 2$ since $X'(1) \neq 0$.

Now, we are going to give the elements of the structure relation of the sequence

Using (52), (61) and Proposition 8., we obtain for $n \geq 0$

Using (52), (61) and Proposition 8., we obtain for
$$n \ge 0$$

$$\begin{cases}
\tilde{C}_0(x) = -x^4 + 2x(x-1) \left((\alpha + \beta + 2)x^2 + \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2} - 16\lambda^{-1} \frac{(\alpha + \beta + 1)(\alpha + 1)(\beta + 1)}{(\alpha + \beta + 3)(\alpha + \beta + 2)^2} \right) + 1, \\
\tilde{C}_1(x) = 2x(x-1) \left((\alpha + \beta + 2)x^2 + \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2} - 2\lambda(\alpha + \beta + 3) \right) + x^4 - 1, \\
\tilde{C}_{2n+2}(x) = 2x(x-1) \left((\alpha + \beta + 2n + 4)x^2 + \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2n + 4} - \frac{4}{(\alpha + \beta + 2n + 4)} \frac{d_{n+1}(\lambda, \alpha, \beta)}{d_n(\lambda, \alpha, \beta)} \right) - x^4 + 1, \\
\tilde{C}_{2n+3}(x) = 2x(x-1) \left((\alpha + \beta + 2n + 4)x^2 + \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2n + 4} - 4 \frac{(n+2)(\alpha + n+2)(\beta + n+2)(\alpha + \beta + n+2)}{(\alpha + \beta + 2n + 4)} \frac{d_n(\lambda, \alpha, \beta)}{d_{n+1}(\lambda, \alpha, \beta)} \right) + x^4 - 1, \\
\tilde{D}_0(x) = -2x \left(-(\alpha + \beta)x^2 - \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2} + 4\lambda^{-1} \frac{(\alpha + \beta + 1)(\alpha + 1)(\beta + 1)}{(\alpha + \beta + 3)(\alpha + \beta + 2)^2} + \lambda(\alpha + \beta + 3) \right), \\
\tilde{D}_{2n+1}(x) = 2x(x-1)^2(\alpha + \beta + 2n + 3), \\
\tilde{D}_{2n+2} = 2x \left((\alpha + \beta + 2n + 4)x^2 + \frac{\alpha^2 - \beta^2}{\alpha + \beta + 2n + 4} - 2 \frac{(n+2)(\alpha + n+2)(\beta + n+2)(\alpha + \beta + n+2)}{(\alpha + \beta + 2n + 4)} \frac{d_{n+1}(\lambda, \alpha, \beta)}{d_n(\lambda, \alpha, \beta)} - \frac{2}{(\alpha + \beta + 2n + 4)} \frac{d_n(\lambda, \alpha, \beta)}{d_{n+1}(\lambda, \alpha, \beta)} \right). \\
(64)$$

REFERENCES

- [1] J. Alaya, L'adjonction d'une masse de Dirac à une forme de Laguerre-Hahn, Maghreb Math. Rev. 2 (6) (1997), 57-76.
- [2] J. Alaya and P. Maroni, Semi-classical and Laguerre-Hahn forms defined by pseudo-functions, Methods and Applications of Analysis, 3 (1) (1996), 12-30.
- [3] D. BEGHDADI AND P. MARONI, On the inverse problem of the product of a form by a polynomial, J. Comput. Appl. Math. 88 (1997), 401-417.
- [4] A.Branquinho and F. Marcellan, Generating new class of orthogonal polynomials, Int.J.Math.Sci. 19 (1996), 643-656.
- [5] B. Bouras and F. Marcellan, Quadratic decomposition of a Laguerre-

- Hahn polynomial sequence I, Bull. Belg. Math. Soc. Simon Stevin 17 (4) (2010), 641-659.
- [6] J. Dini, Sur les formes linéaires et les polynômes orthogonaux de Lagurre -Hahn, Thèse de l'Univ. Pierre de Marie Curie, Paris (1988).
- [7] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
- [8] F. MARCELLAN AND E. PRIANES, Perturbations of Laguerre-Hahn linear functionals, J. Comput. Appl. Math., 105 (1999), 109-128.
- [9] P. MARONI, Sur la décomposition quadratique d'une suite de polynômes orthogonaux, I, Rivista di Mat. Pura ed Appl. 6 (1991), 19-53.
- [10] P. MARONI, Sur la suite de polynômes orthogonaux associée à la forme $u = \delta_c + \lambda \left(x c\right)^{-1} L$. Period. Math. Hung. 21 (3), (1990), 223-248.
- [11] M. SGHAIER AND M. ZAATRA, A class of symmetric Laguerre-Hahn Polynomials, Commun. Anal. Theory Contin. Fract. 17 (2010), 1-11.
- [12] M. SGHAIER AND J. ALAYA, Orthogonal Polynomials Associated with Some Modifications of a Linear Form, Methods Appl. Anal. 11 (2) (2004), 267-294.